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1 Introduction

1.1 The �history�of the Waiting Value

The issue of irreversibility and uncertainty in environmental decisions has
been largely analyzed in the last three decades. From the �rst de�nition
of the Quasi-Option Value (QOV ), given by Arrow and Fisher (1974), the
key concept has been developed in several articles, among others, by Henry
(1974), Dasgupta and Heal (1979), Hanemann (1982, 1989), Fisher and Kru-
tilla (1985), Beltratti, Chichilnisky and Heal (1996), Fisher (2000), Pindyck
(2000).
Arrow and Fisher (1974), while examining the optimal level of develop-

ment of a natural resource, identi�ed a concept that they termed �quasi-
option�value. The concept emerged from a two-period model of choice (de-
velop or preserve), where development is irreversible 3 and the expected net
bene�ts of preservation in future periods are conditional upon the choice in
the present period.
Fisher and Hanemann (1987) 4 started their analysis using the same con-

text of Arrow and Fisher�s model, characterized by risk neutrality of the
Decision Maker (DM henceforth), irreversibility of the action �develop-
ment�, uncertainty about the future bene�ts (of development and preser-
vation) and by independent learning (exogenous information): the DM can
receive new information about the environmental asset (about the future ben-
e�ts of his action) only by letting time pass; the acquisition of information
is independent from the choice made in the �rst period.5 More speci�cally,
in Fisher and Hanemann�s model, there are two alternative scenarios for the
acquisition of information about the future consequences of development. In
the �rst scenario, exogenous information is available (and it is known it will
be available) with certainty at the end of the �rst period, in su¢ cient time to
be incorporated into the decision to be taken in the second (and last) period;
in this scenario, the prospect of future information is fully recognized and
incorporated explicitly in the current decision. In the second information
scenario, either information is not available (and it is known that it will be
not available) in su¢ cient time to be incorporated into the choice in the fu-
ture period or it is disregarded by the DM when he sets the current level of

3In the sense that development of the environmental resource can take place either
�now�or �in the future�but, once undertaken, it is irreversible.

4See also Hanemann (1989), Fisher (2000).
5In particular, information can emerge by only �waiting� (as the second period ap-

proaches, one is able to make a more accurate assessment of the social value of wilderness
preservation in that period) or as the result of a separate research program.
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development.
Let us identify with ct the amount of environmental resource preserved in

period t = 1; 2, with q 2 [0; 1] the probability of acquiring new information
exogenously at the end of period 1 and assume that the level of the envi-
ronmental resource is normalized to 1. If we de�ne with EVexojq=1(c1) the
expected net bene�ts over both periods (of preserving c1 in the �rst period)
under the �rst information scenario 6 and with EVno(c1) the same expected
net bene�ts under the second information scenario, requiring the investment
decision to be con�ned to a binary choice between full development (c1 = 0)
and no development at all (c1 = 1), Fisher and Hanemann de�ne as option
value à la Arrow-Fisher (Quasi-Option Value)

QOV =
�
EVexojq=1(1)� EVexojq=1(0)

�
� [EVno(1)� EVno(0)]

This is a correction factor, that can be interpreted in the following way: let
us rewrite the QOV as

QOV =
�
EVexojq=1(1)� EVno(1)

�
�
�
EVexojq=1(0)� EVno(0)

�
In the terminology of decision theory,

�
EVexojq=1(1)� EVno(1)

�
is the value of

perfect information conditional on having preserved the whole environmental
area in t = 1 (it is the gain deriving from exogenous information when choos-
ing c2 conditional on having set c1 = 1). Similarly,

�
EVexojq=1(0)� EVno(0)

�
is the value of perfect information conditional on having destroyed the whole
environmental area in t = 1. The QOV is the di¤erence between these
two values. But irreversibility creates asymmetry: if one decides to preserve
initially, he can always reverse that decision later when he obtains more ac-
curate information about the consequences of development; on the contrary,
if he decides to develop (everything) now (c1 = 0), the decision cannot be
reversed and any subsequent information he may receive has no economic
value. Hence, EVexojq=1(0) = EVno(0) and the expression of the option value
à la Arrow-Fisher becomes

QOV = EVexojq=1(1)� EVno(1)
Consequently, the QOV is always non-negative,7 since (exogenous) informa-
tion is not dangerous, so that EVexojq=1(1)� EVno(1) > 0: A decision to set

6Remember that in the �rst information scenario new information comes about
exogenously with certainty, hence q = 1.

7However, when there is a continuum of preservation (development) levels, rather than
a binary choice between full development and full conservation, this conclusion needs to
be modi�ed. Let c1 2 [0; 1] and c2 2 [0; c1], because of irreversibility. Analyzing this
case, Epstein (1980) established that it is not necessarily true that (c�1)exojq=1 � (c�1)0. He
developed also a set of su¢ cients conditions for Arrow and Fisher�s result to carry over
when there is a continuum of preservation (development) levels.
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c1 = 1 preserves �exibility, and the QOV is the value of such �exibility. In
particular, it is the gain the DM obtains when he can receive (exogenous)
information regarding future bene�ts, if he decides not to develop in the
current period (with respect to the case in which he ignores the possibility
of receiving this kind of information).8

This does not mean that developing in the �rst period should never be
optimal, hence (c�1)exojq=1 could be di¤erent from 1; after all, it may happen
that EVexojq=1(1) < EVexo(0):
Rather, it means that the case for preservation is strenghtened when one

recognizes the prospect of further information about the future consequences
of development: in general, the amount of environmental resource preserved
under the �rst information scenario is higher, i.e. (c�1)exojq=1 � (c�1)no.
According to the de�nition of Arrow and Fisher (1974), the QOV is a

particular �Waiting Value�, i.e. a value emerging when the DM �stands by�
in the current periods, moving his decision to the future when new (exoge-
nous) information may be available. Di¤erently from the de�nition above,
the interpretation we give of the waiting value (intended as the money the
DM is willing to pay in order to shift the decision from now to the future)
is closer to the formulation of Conrad (1980) and Miller and Lad (1984):
Conrad (1980) states that the QOV - so de�ned - is identical to the expected
net value at time t = 1 of information in c1; Miller and Lad (1984) state that
�the existence of a QOV , as de�ned generally, depends only the name on
the irreversible character of development. Under conditions of irreversibility,
an option value is called a QOV . But any option value, quasi or otherwise,
stems from the relative values of �exible and in�exible decisions, not from
the existence of irreversibility per se�.
In line with Conrad�s and Miller�s and Lad�s intuitions, we agree that, in

general, a waiting value (whose family the QOV belongs) has to be inter-
preted as the di¤erence between the expected value of the optimal �exible
decision and that of the optimal �xed decision: this di¤erence is greater than
zero. Hence, we de�ne in general the Waiting Value (WV henceforth) as

WV = EVexo((c
�
1)exo)� EVno((c�1)no)

In the �rst information scenario, the DM can choose c2 after having
received (with a given probability q 2 (0; 1]) information about the relative

8Another interpretation: if the DM ignored the possibility of exogenously acquiring
information about the future bene�ts of development/preservation and myopically based
his decision on the maximization of EVno(c1), QOV is the shadow tax that would have to
be imposed on development in order to steer him the correct choice on whether or not to
develop at all.
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bene�ts of the second period (what Miller and Lad called �exible decision);
hence, we indicate with EVexo(c1) the expected value of net bene�ts over
both periods (of preserving c1 in the �rst period) when (only) exogenous
information arrives with probability q 2 (0; 1] at the end of period 1.
In the second information scenario, where the myopia of the DM pre-

vents him from recognizing the possibility of acquiring new information ex-
ogenously, the optimal choices of c1 and c2 are made simultaneously in the
�rst period (what Miller and Lad called in�exible decision). 9

According to our formulation of the problem, the QOV à la Arrow-Fisher
becomes a particular case of WV that comes around when the DM chooses
to preserve the entire environmental resource in the �rst period: it is the
expected value of information conditional on having set c�1 = 1. Also, it
has to be intended as the upper bound of the WV , since, by preserving
everything in the �rst period, the DM , in the second period, can choose an
action in the same set of possible actions available in the �rst period. Hence,
QOV � WV .10

1.2 The need for a Testing Value

The conclusions drawn by Arrow and Fisher (1974) and Fisher and Hane-
mann (1987) on the QOV still hold, even if the cost of information is included
in the model.11

On the other hand, independently from the fact that information arrives
at a cost or not, Arrow and Fisher�s results on the optimality of a complete
preservation of environmental resources when their destruction is irreversible
are derived in the framework of independent learning, i.e. with exogenous
information.
It is commonly accepted in the literature on environmental option values

that this result does not hold if information is endogenous (i.e., dependent

9Hence the DM chooses the amount of c2 without knowing the realizations of the
second period bene�ts.
10Fisher and Hanemann (1987) suppose that, in what we called the �exogenous infor-

mation scenario�, information arrives with probability q = 1. We instead generalise such
framework by allowing information to come out not with certainty, but according to a
given probability q 2 (0; 1]. See Section 1.3.2 for a complete analysis of this more general
case.
11They recognize the fact that information about the consequences of development ar-

riving automatically, by simply letting time get by, is unrealistic (or, at least, rare): the
acquisition of information usually requires the expenditure of resources and occurs only if
some (other) agents take appropriate actions. Indeed, if the cost of information exceeded
the expected value of information given c1 = 1, the di¤erence EVexojq=1(1) � EVno(1)
would be negative, hence it would not be optimal for the DM to acquire it.
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learning). Miller and Lad (1984) and Freeman (1984) stated that �if infor-
mation concerning future e¤ects of the irreversible depletion of an environ-
mental resource can be obtained only carrying out depletion itself in t = 1,
than it is optimal to develop (only) one portion of the environmental asset in
the current period�. In other words, the policy of postponing the choice in
order to enable the DM to pro�t from the coming information is sub-optimal
when this is endogenous: if the uncertainty is primarily about the bene�ts of
preservation/development, this strengthens the case for some development.
On the other hand, even when more information is provided solely by devel-
opment, substantial development 12 may not be in order.
Freeman (1984) and Fisher and Hanemann (1987) assume that full infor-

mation is provided by any amount of development; moreover, no exogenous
information arrives. Let us identify with � 2 [0; 1] the probability of ac-
quiring new information endogenously; the resulting expected value function
under this scenario, denoted as EVendoj�=1(c1), is equivalent to that in the
�no-information�scenario, EVno, in the event no development is undertaken,
and to that in the �new exogenous information� (with certainty) scenario,
EVexojq=1, in the event any development is undertaken 13. In symbols, 14

EVendoj�=1(c1) =

�
EVno(1) if c1 = 1
EVexojq=1(c1) if c1 2 [0; 1)

Several results follow form this (particular) formulation of the problem:
1) It can never be optimal to preserve the whole amount of the environ-

mental resource, i.e. (c�1)endo 6= 1.
2) There is still a corner solution for c1, in the sense that one either

develops fully now, i.e. (c�1)endo = 0, or engages in an in�nitesimal amount
" > 0 of development, i.e. (c�1)endo = ".
3) The QOV of the minimum feasible development (" � development),

de�ned as

QOV" = EVendoj�=1(")� EVno(")
12To be intended as the destruction of a high proportion of the environmental area.
13As one can notice, this is a very particular information structure, where only a very

particular �kind� of endogenous information is allowed: the new information coming
around when any level of development is undertaken is of the same �kind�we discover
under the exogenous information context. We maintain this assumption in our model.
As in the exogenous information case, we instead do not maintain the assumption that
information arrives endogenously with certainty (i.e., � = 1) and that the level of the
information received is independent from c1. See Section 1.3.3 for that.
14Notice that we indicate with EVendoj�=1 the expected value of endogenous information

given that it will come with probability � = 1 in case of (some) development of the
environmental resource.
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is always positive.
4) (c�1)endo � (c�1)no, i.e. if the decision is to develop when one disregards

the possibility of dependent learning, the correct decision when recognizing
this possibility cannot be more development and may be less.

The speci�city of Freeman�s (1984) and Fisher and Hanemann�s (1987)
results on the QOV" raises doubts as to whether the policy implications of
the described environmental decision problem could depend on the precise
manner in which development generates information (i.e., on the form of the
�information production function�). Hence, in our framework (Section 2.1
and 2.2) we try to model endogenous uncertainty in order to be as much
�general�and �near to reality�as possible.
First of all, contrarily to what is assumed in the environmental option val-

ues literature, we think there are a large number of environmental problems
in which the possibility of acquiring new information endogenously depends
on the �size�of the development the DM chooses to perform. In the case
of oil extraction in one country, for example, there may be uncertainty as to
whether and where the land contains oil in commercial quantities. If this is
the case, it is likely that the uncertainty can be solved by undertaking some
development. But it is doubtless that if you drill the land (by destroying a
part of the natural resource) the deeper you drill the higher the probabil-
ity of discovering an oil well. Another example: if you destroy only one or
two trees of the Amazon forest, you obtain very little information about the
possible extinction of a certain species. If instead you keep on destroying
a larger portion of the forest, you can obtain higher information about the
pervasive e¤ects of the development activity. Thus, it seems plausible that,
in case information comes out through development of the natural resource,
the level of information coming out must depend on the level of development
carried out. In other words, it must be inversely related to c1. This is an
assumption we introduce in our model, when we characterize the endogenous
information framework.
Moreover, di¤erently from Fisher and Hanemann�s QOV", we de�ne the

Testing Value (TV , henceforth) not as the di¤erence between EVendoj�=1(")
and EVno(") but rather as

TV = EV ((c�1)compl)� EVexo((c�1)exo)

where EV (c1) is the expected value of net bene�ts when there is both ex-
ogenous (arriving with probability q 2 (0; 1]) and endogenous (arriving with
probability � 2 (0; 1], whose level is decreasing in c1) information15; c�1 is
15In what follows, we also de�ne EVjq+�=1(c1) as the expected value of net bene�ts
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the optimal preservation level in the current period, under this information
structure.
According to our de�nition, the TV has to be interpreted as the addi-

tional value attached to endogenous information, additional with respect to
information exogenously arriving. In other words, it is the gain the DM
obtains when he can receive information regarding future bene�ts, by devel-
oping in the current period (with respect to the case in which he ignores the
possibility of receiving information in this way). Obviously, if (c�1)compl = 1,
there is only exogenous information, then EV � EVexo and also (c�1)exo = 1;
hence, in this case, TV = 0 16.
The QOV of the minimum feasible development de�ned by Freeman

(1984) and Hanemann and Fisher (1987) becomes a particular TV that
emerges when the following two conditions are contemporaneously satis�ed:
- only endogenous information is available (exogenous information is com-

pletely absent);
- information coming out is the same for every c1 2 [0; 1).

2 The Model

2.1 Assumptions and notation

Let us consider a two-period model of choice (t = 1; 2), where in t = 1 the
DM has to choose the amount of environmental resource he wants to preserve
(not develop) until t =2. Assuming the level of the environmental resource
is normalized to 1, let us indicate with c1 2 [0; 1] the amount preserved in
period 1. We indicate with b1 the marginal net bene�t deriving from the
decision of preserving at time t = 1 17. We assume current net bene�ts
from preservation are known with certainty by the DM and are negative,
i.e. b1 < 0 18; thus, the unique incentive to preserve in t = 1 is given by the

when both exogenous and endogenous information is available, given that the sum of the
probability that it comes out is equal to 1 (q + � = 1).
16For the properties of the Testing Value, see Section 1.4.3.
17Marginal net bene�ts in period t, bt, could be interpreted as

bt = (pbt � pct)� (dbt � dct)

where pbt; pct; dbt; dct represent, respectively, marginal preservation bene�ts, marginal
preservation costs, marginal development bene�ts and marginal development costs in t.
18The framework could be further generalized by considering a larger state of nature

space, namely
� = [b1(c1); b2(c1; c2)j(c1; c2) 2 D]

where D is the decision space.
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possibility to obtain a positive future bene�t in t = 2 19.
In the second period, the DM chooses again the amount of resource to be

preserved. Since we assume development is irreversible, it is straightforward
that in t =2 it is not possible to preserve more than one has done in t =1:
the DM�s options in 2 are constrained by the decision made in 1. Thus, if
we indicate with c2 the amount preserved in period 2, by irreversibility it
is c2 2 [0; c1]: the amount chosen in t = 2 cannot be higher than the one
chosen in t = 1.
In the second period, there are two possible states of the world. With

probability �, the true state is revealed before the decision in t = 2 is taken
by the DM . With probability 1��, the DM does not know the true state of
the world when he chooses the optimal level of c2 in t = 2: this state will be
revealed after this decision has been made. We indicate with bj2 the marginal
bene�t deriving from preservation in period 2, when the revealed state of
the world is sj; j = u; f . The probability distribution over the states of the
world is

�
su; p; sf ; 1� p

�
20. We also assume the bene�t from preservation is

negative if the state of the world is su (unfavorable state), and positive if the
state of the world is sf (favorable state), i.e. bu2 < 0; b

f
2 > 0

21.
According to our assumptions, we indicate with:
c2: amount of environmental resource preserved in t = 2, when the true

state of the world has not been revealed before;
cu2 : amount of environmental resource preserved in t = 2, when the DM

knows the true state of the world is sj; j = u; f .

A more intuitive way to identify the decision problem described above is
to sum up the sequence of events through four main steps:
- Step (a). The DM chooses the amount of the environmental resource

he wants to preserve in t = 1 (until t = 2).
- Step (b). Either the true state of the world is revealed or it is not.

The members of � are the various pairs of bene�ts and costs which could possibly
accrue during the �rst period and second period for each possible decision which could be
made. In that case, also bene�ts in period t = 1 are not known when choosing the level
of preservation c1.
The components of the pairs in �, bt, can be thought of as four dimensional vectors

(pct; pbt; dct; dbt) representing preservation costs, preservation bene�ts, development costs
and development bene�ts associated with the action taken in period t.
19We chose not to contemplate into the analysis the case b1 = 0, since it makes the

choice of c1 irrelevant for what concerns bene�ts received in the �rst period. The same
reasoning holds for b2 (with respect to c2).
20p is the probability of the state su before this state is revealed.
21Di¤erently form Beltratti, Chichilnisky and Heal (1996), we do not assume that the

expected bene�t of preservation in the second period is positive, i.e. pbu2 + (1� p)bs2 > 0.
We allow this quantity to be greater, equal or less than zero.
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- Step (c). The DM chooses the amount of the environmental resource
he wants to preserve in t = 2.
- Step (d). If in Step (b) no information has come out, now the true state

of the world is revealed.
The structure of the decision problem is summarized in Figure 1.

 1

  2

  2

  2

c1

c2

s u

s f

s u

s fπ

1 π−

uc2

fc2

 (a)  (b)  (c) (d)

uucbcb 2211
+

ff cbcb 2211
+

2211
cbcb u+

2211
cbcb f+

Figure 1

Before starting the analysis of the optimal preservation choice under the
di¤erent information scenarios, it is useful to state a pair of results which
holds independently from the kind of information structure we deal with
(i.e., independently from the way in which � is de�ned):
Result 1. If in Step (b) the true state of the world is revealed, then

(cu2)
� = 0;

(cf2)
� = c1:

Result 2. If in Step (b) the true state of the world is not revealed, then

c2
� =

�
0 if pbu2 + (1� p)bs2 < 0
c1 if pbu2 + (1� p)bs2 > 0
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2.2 Modelling uncertainty

In our framework, uncertainty characterizes Step (b): the DM does not know
if the true state of the world will be known or not when he takes his choice
c2 in Step (c). The key parameter is � 2 [0; 1], the probability that the
true state is revealed before choosing c2, i.e. the probability new (complete)
information arrives before Step (c).
According to the way in which we de�ne the form and the properties of

�, we are able to:
- allow for di¤erent �degrees of certainty�of the coming of new informa-

tion: information can arrive with certainty (� = 1), with a certain probability
(� 2 (0; 1]) or may not come out with certainty (� = 0);
- identify di¤erent kinds of new �information�, according to its nature

(looking at the components inside �). Information can be (only) exogenous,
(only) endogenous, or both:
� in the �rst case, � does not depend on (1�c1), the amount of environmental
resource developed in (and, obviously, on c1, the amount of environmental
resource preserved in) Step (a);
� in the second case, � does depend on c1, or, rather, on (1 � c1), the level
of development. In particular, we assume that (as stated in Section 1.1.2),
in case of dependent learning, the level of information coming out is directly
proportional to the level of development carried out ;
� in the third case, one part of information arrives exogenously and the rest
comes out according to (1 � c1); hence, � = q + �f(1 � c1), with f 0(:) > 0,
� 2 [0; 1] being the probability of acquiring endogenous information (of the
speci�ed form) and q 2 [0; 1] being the probability of acquiring exogenous
information. In particular, we analyze the case where f(1� c1) = 1� c1, i.e.
it is a linear (decreasing) function of c1.
We summarize all information categories described above in a general

case (and we call it Case A), then derive all the other subcases by imposing
certain restrictions on the key parameters:
CASE A: Complete (i.e. Exogenous and Endogenous) information

� = q + �(1� c1) for c1 2 [0; 1]
with q 2 [0; 1] ; � 2 [0; 1� q] :

CASE B: (Only) Exogenous information

CASE A with � = 0 for c1 2 [0; 1]

CASE C: (Only) Endogenous information

CASE A with q = 0 for c1 2 [0; 1]
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CASE D: No information

� = q = 0 for c1 2 [0; 1]

The subcases �information arriving with certainty� 22 can be derived in the
following ways:
- Case A with � = 1� q (Complete info arriving with certainty, if c1 = 0);
- Case B with q = 1 (Exogenous info arriving with certainty);
- Case C with � = 1 (Endogenous info arriving with certainty, if c1 = 0).

3 Maximization Problem and Optimal Choices

In this section, we write down the DM�s maximization problem and �nd the
optimal choices c�1; c

�
2 in each of the four information structures described in

Section 2.2.

3.1 Case A: Complete (i.e. Endogenous and Exoge-
nous) Information

Let us write and solve the DM�s utility maximization problem in the most
general case, in which both exogenous and endogenous information are avail-
able with a certain probability (respectively, q 2 [0; 1] and � 2 [0; 1]) after
the decision made in t = 1, i.e. at Step (b).

 1
c1

  2

 2

  2

c2

p

1­ p

2211
cbcb u+

2211
cbcb f+

p

1­ p

02 =
uc

12 cc f
=

11
cb

1211 cbcb f+

)1(1 1cq −−− λ

)1( 1cq −+ λ

Figure 2

22We analyze this case separately only because it is the most frequently analyzed in
environmental option value literature: thus, it allows us to make comparisons and to show
that our results hold even under the restriction of information arriving with certainty.
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Given Result 1 and Result 2, the realized payo¤s are those indicated in
Figure 2.
The DM�s expected value of net bene�ts of preservation in both periods

(given Result 1 and Result 2) is

EV (c1; (c
u
2)
�; (cf2)

�; c2) = [q + �(1� c1)]
h
b1 + (1� p)bf2

i
c1 +

f1� [q + �(1� c1)]g
h
b1c1 + pb

u
2c2 + (1� p)b

f
2c2

i
By analyzing the �low part�of the compound lottery in Figure 2, one can
distinguish among two cases, according to the expected value of the second-
period net bene�ts when the DM does not receive new information at Step
(b):

(i) pbu2 + (1� p)b
f
2 < 0

The optimal levels of preservation in t = 1 and in t = 2 are:

c1
� =

8>>><>>>:
0 if b1 2

h
�1;�(1� p)(�+ q)bf2

i
(i)0

b1+(1�p)(q+�)bf2
2(1�p)�bf2

if b1 2
h
�(1� p)(�+ q)bf2 ; (1� p)(�� q)b

f
2

i
(i)00

1 if b1 2
h
(1� p)(�� q)bf2 ; 0

i
; � � q (i)000

c2
� = 0

The optimal expected value function EV �(b1; bu2 ; b
f
2) is

EV � =

8>>><>>>:
0 if b1 2

h
�1;�(1� p)(�+ q)bf2

i
(i)0

[b1+(1�p)(q+�)bf2 ]
2

4(1�p)�bf2
if b1 2

h
�(1� p)(�+ q)bf2 ; (1� p)(�� q)b

f
2

i
(i)00

b1+(1� p)(q + �)bf2 if b1 2
h
(1� p)(�� q)bf2 ; 0

i
; � � q (i)000

(ii) pbu2 + (1� p)b
f
2 > 0

The optimal levels of preservation in t = 1 and in t = 2 are:

c1
� =

8>>><>>>:
0 if b1 2

h
�1;�(1� p)(�+ q)bf2

i
(i)0

b1+(1�p)(q+�)bf2
�[(1�p)bf2�pbu2 ]

if b1 2
h
�(1� p)(�+ q)bf2 ; (1� p)(�� q)b

f
2

i
(i)00

1 if b1 2
h
(1� p)(�� q)bf2 ; 0

i
; � � q (i)000

c2
� = c1

�

13



The optimal expected value function EV �(b1; bu2 ; b
f
2) is

23

EV � =

8><>:
0 if b1 + (1� p)bf2 + (1� q)bu2 2 [�1; �bu2 ] (ii)0

� [b1+(1�p)b
f
2+p(1�q��)bu2 ]

2

4p�bu2
if b1 + (1� p)bf2 + (1� q)bu2 2 [�bu2 ;��bu2 ] (ii)00

b1+(1� p)bf2+p(1� q)b
u
2 if b1 + (1� p)bf2 + (1� q)bu2 2 [��bu2 ;+1] (ii)000

3.2 CASE B: (Only) Exogenous Information

When � = 0 (no endogenous information) the DM in Step (a) knows that at
Step (b) with probability q 2 [0; 1] he will know the realized value of the net
bene�t bj2. Hence, he knows that information coming is independent from
the preservation level chosen in Step (a); although in the same step he is not
sure that he will know the true state of the world when he will choose at
Step (c).
We solve the DM�s utility maximization problem by applying the same

principle of reduction of the compound lotteries and the same procedure of
maximization we use in Case A.
Given Result 1 and Result 2, the realized payo¤s are those indicated in

Figure 2, taking into account the probabilities assigned to the branches of
the trees are di¤erent (we have q in place of q + �(1� c1)).
Taking into account Result 1 and Result 2, the DM�s expected payo¤ is

EVexo(c1; (c
u
2)
�; (cf2)

�; c2) = q
h
(pb1 + (1� p)(b1 + bf2)

i
c1 +

+(1� q)
h
p(b1c1 + b

u
2c2) + (1� p)(b1c1 + b

f
2c2)

i
= q

h
b1 + (1� p)bf2

i
c1 + (1� q)

h
b1c1 + (pb

u
2 + (1� p)b

f
2)c2

i
(i) If pbu2 + (1 � p)b

f
2 < 0, the optimal levels of preservation in the two

periods are

c1
� =

�
0 if b1 + q(1� p)bf2 < 0 (i)0

1 if b1 + q(1� p)bf2 > 0 (i)00

c2
� = 0

23When q+� 2 [0; 1), the DM at Step (a) knows that, even if he decides to destroy the
entire environmental resource (c1 = 0), he is not certain that at Step (b) the true state
of the world will come out. Hence, even if he destroys everything in t = 1, he is not sure
that he will know the realized value of the net bene�t bi2 when choosing c2 at Step (c).
On the contrary, when q + � = 1, the DM is sure that, in case he destroys everything
(c1 = 0) he will receive with certainty some information at Step (b). We call this subcase
�Complete information arriving with certainty, if c1 = 0�. The optimal values for c1 and
c2 and the optimal expected value of net bene�ts over both periods can be easily found
by substituting q + � = 1 into the results obtained for the general case.

14



consequently the optimal expected value function EV �exo(b1; b
u
2 ; b

f
2) is

EV �exo =

�
0 if b1 + q(1� p)bf2 < 0 (i)0

b1 + q(1� p)bf2 if b1 + q(1� p)bf2 < 0 (i)00

(ii) If pbu2 + (1 � p)b
f
2 > 0, the optimal levels of preservation in the two

periods are

c�1 =

�
0 if b1 + (1� q)pbu2 + (1� p)b

f
2 < 0 (ii)0

1 if b1 + (1� q)pbu2 + (1� p)b
f
2 > 0 (ii)00

c2
� = c1

�

and the optimal expected value function EV �exo(b1; b
u
2 ; b

f
2) is

EV �exo =

�
0 if b1 + (1� q)pbu2 + (1� p)b

f
2 < 0 (ii)0

b1 + (1� q)pbu2 + (1� p)b
f
2 if b1 + (1� q)pbu2 + (1� p)b

f
2 > 0 (ii)00

A particular subcase: Exogenous Information arriving with cer-
tainty

This is the case in which the �standard�QOV à la Arrow-Fisher (as analyzed
in Section 1.1) emerges:.if new exogenous information arrives with certainty
(q = 1) in Step (b), the DM at Step (a) knows that when deciding at Step
(c) he will know if the net bene�t is bu2 or b

f
2 .

Hence, the decision problem in Figure 1 can be reduced to the one in Figure
6 below.

s u

s f

uc2

fc2

uucbcb 2211
+

ff cbcb 2211
+ 1

c1

Figure 6

The expected value of the lottery is

EVexojq=1(c1; c
u
2 ; c

f
2) = b1c1 + pb

u
2c
u
2 + (1� p)b

f
2c
f
2

Given Result 1,

EVexojq=1(c1; (c
u
2)
�; (cf2)

�) = b1c1 + (1� p)bf2c1

15



Since the expected value function is linear in c1, the optimal level of preser-
vation in t = 1 is

c1
� = 0 if b1 + (1� p)bf2 < 0 (i)

c1
� = 1 if b1 + (1� p)bf2 > 0 (ii)

and the optimal expected value function EVexojq=1(b1; bu2 ; b
f
2) is

EVexojq=1 =

�
0 if b1 + (1� p)bf2 < 0 (i)

b1 + (1� p)bf2 if b1 + (1� p)bf2 > 0 (ii)

3.3 Case C : (Only) Endogenous Information

The optimal values of c1, c2 and of the expected bene�ts in case only endoge-
nous information is possible can be easily derived by writing down results
found in Case A and imposing q = 0 (no exogenous information):

(i) If pbu2 + (1 � p)b
f
2 < 0, it can never be b1 > (1 � p)�b

f
2 , thus the region

(i)000 (in which c1� = 1) disappears (i.e. it will never be c1� = 1 in the subcase
(i)), and the optimal levels of preservation in the two periods are

c1
� =

8<: 0 if b1 2
h
�1;�(1� p)�bf2

i
(i)0

b1+(1�p)�bf2
2(1�p)�bf2

if b1 2
h
�(1� p)�bf2 ; 0

i
(i)00

c2
� = 0

and thus the optimal expected value function EV �endo(b1; b
u
2 ; b

f
2) is

EV �endo =

8<: 0 if b1 2
h
�1;�(1� p)�bf2

i
(i)0

[b1+(1�p)�bf2 ]
2

4(1�p)�bf2
if b1 2

h
�(1� p)�bf2 ; 0

i
(i)00

(ii) If pbu2 + (1 � p)b
f
2 > 0, the optimal levels of preservation in the two

periods are

c1
� =

8><>:
0 if b1 + (1� p)bf2 + bu2 2 [�1; �bu2 ] (ii)0

� b1+(1�p)bf2+p(1��)bu2
2p�bu2

if b1 + (1� p)bf2 + bu2 2 [�bu2 ;��bu2 ] (ii)00

1 if b1 + (1� p)bf2 + bu2 2 [��bu2 ;+1] (ii)000

c2
� = c1

�

and thus the optimal expected value function EV �endo(b1; b
u
2 ; b

f
2) is

EV �endo =

8><>:
0 if b1 + (1� p)bf2 + bu2 2 [�1; �bu2 ] (ii)0

� [b1+(1�p)b
f
2+p(1�q��)bu2 ]

2

4p�bu2
if b1 + (1� p)bf2 + bu2 2 [�bu2 ;��bu2 ] (ii)00

b1 + (1� p)bf2 + pbu2 if b1 + (1� p)bf2 + bu2 2 [��bu2 ;+1] (ii)000
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A particular subcase: Endogenous Information arriving with cer-
tainty, if c1 = 0

The case � = 1 serves the aim of comparing our results with those common
in environmental option values literature, in which the most representative
framework of environmental decisions under uncertainty and irreversibility is
that of Freeman (1984) and Fisher and Hanemann (1987): within this model,
in the information scenario where information is completely endogenous (q =
0), it arrives with certainty (� = 1). Under these two restrictions, we could
compare our TV to the �standard�QOV" à la Arrow-Fisher (as analyzed in
Section 1.2).
The optimal values for c1 and c2 and the optimal expected value of net
bene�ts over both periods can be easily found by substituting � = 1 in the
results obtained for the general case (Case A).

3.4 Case D: No information

The decision problem represented in Figure 1 is reduced to that in Figure
6 below.

s u

s f

2211
cbcb u+

2211
cbcb f+

c2
 1

c1
 2

Figure 6

The expected value of the lottery is

EV (c1; c2) = b1c1 +
h
pbu2 + (1� p)b

f
2

i
c2

Let us write the expected value of net bene�ts of preservation as a function
of c1 only, by choosing c2 optimally in the second period: by this way, we
obtain the expected value of preserving in Step (a), given that the DM�s
choice in Step (c) is optimal.

By looking at Result 2,

(i) pbu2 + (1� p)b
f
2 < 0 =) c2

� = 0

=) EVno(c1; c2
� = 0) = b1c1
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By maximizing with respect to c1,

c1
� = c2

� = 0

thus the optimal expected value function is

EVno
�(b1; b

u
2 ; b

f
2) = 0

(ii) pbu2 + (1� p)b
f
2 > 0 =) c2

� = c1

=) EVno(c1; c2
� = c1) =

h
b1 + pb

u
2 + (1� p)b

f
2

i
c1:

By maximizing,

c1
� =

�
0 if b1 + pb

u
2 + (1� p)b

f
2 < 0 (ii)0

1 if b1 + pb
u
2 + (1� p)b

f
2 > 0 (ii)00

c2
� = c1

�

thus the optimal expected value function EVno�(b1; bu2 ; b
f
2) is

EVno
� =

�
0 if b1 + pb

u
2 + (1� p)b

f
2 < 0 (ii)0

b1 + pb
u
2 + (1� p)b

f
2 if b1 + pb

u
2 + (1� p)b

f
2 > 0 (ii)00

Noting that condition (ii)00 implies (ii) and that condition (i) and (ii) are
complementary, we can sum up the optimal choices in the two subcases:

c1
� = c2

� = 0 if b1 + pb
u
2 + (1� p)b

f
2 < 0

c1
� = c2

� = 1 if b1 + pb
u
2 + (1� p)b

f
2 > 0

and the relative optimal expected value function EVno�(b1; bu2 ; b
f
2) is

EVno
� =

�
0 if b1 + pb

u
2 + (1� p)b

f
2 < 0

b1 + pb
u
2 + (1� p) if b1 + pb

u
2 + (1� p)b

f
2 > 0

4 Calculus of the WV and of the TV

In this section, we use the results of the DM�s maximization problem (the
optimal level of c1 and c2 and the optimal expected value functions in each of
the four information structures) in order to express the WV and the TV as
functions of the parameters of the decision problem and describe their prop-
erties and their e¤ects on DM�s optimal behaviour.
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4.1 Graphical representation of the optimal preserva-
tion choices

First of all, let us represent graphically the results we have obtained on the
optimal level of c1 and c2 and on the expected value functions EV (:). We
introduce a Cartesian plane with the relative bene�ts � b1

bf2
on the x-axis and

the relative bene�ts � bu2
bf2
on the y-axis. 24 Obviously, when these two ratios

vary (when the values of the net bene�ts of preservation in t = 1 and t = 2
vary), the optimal preservation choices for the �rst and for the second period
change too. In Table 1, we indicate for each �gure the information scenario
represented inside and the speci�c values of the three parameters p; q and �.

Figure A:1 Case A with p = 1
2
; q = 1

3
; � = 1

3

Figure A:2 Case A with p = 1
2
; q = 1

3
; � = 1

4

Figure A:3 Case A with p = 1
2
; q = 1

3
; � = 2

3

Figure A:4 Case A with p = 1
2
; q = 2

3
; � = 1

3

Figure B:1 Case B with p = 1
2
; q = 1

3

Figure B:2 Case B with p = 1
2
; q = 1

Figure C Case C with p = 1
2
; � = 1

Figure D Case D with p = 1
2

(Table 1. Cases and parameters relative to each Figure.)

A brief description of the preservation choice path in each of the di¤erent
colorful regions of the quadrant I of the Cartesian plane:

� �White�region: the DM does not preserve anything in t = 1 and so
also in t = 2;

� �Green" region: the DM preserves everything both in t = 1 and also
in t = 2;

� �Yellow" region: the DM preserves only a part of the resource in t = 1
and the same amount in t = 2;

� �Blue" region: the DM preserves everything in t = 1 and nothing in
t = 2;

� �Orange" region: the DM preserves only a part of the resource in t = 1
and nothing in t = 2;

24Our choice of these two ratios as variables for the Cartesian axes can be explained,
among others, by the need of working with positive quantities (since b1; bu2 < 0; b

f
2 > 0),

in order to concentrate in quadrant I of the Cartesian plane the analysis of the conditions
(inequalities) we have found by solving the maximization problem.
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4.2 Properties of the Waiting Value

Let us calculate the Waiting Value using the expression we have introduced
in Section 1.1, i.e.

WV = EVexo
� � EVno�

Since EVexo� and EVno� vary according to the values of b1; bu2 and b
f
2 , we

have to calculate the di¤erence between the two optimal expected values by
looking at the di¤erent regions we identify in the Cartesian plane

�
� b1
bf2
;� bu2

bf2

�
:

we do it by comparing the optimal expected values in Figure B:1 to those
in Figure D.

� For � bu2
bf2
> 1 and � b1

bf2
> 1; WV = 0.

� For � bu2
bf2
< 1 and � bu2

bf2
> 1�p

(1�q)p �
1

(1�q)p

�
� b1
bf2

�
; WV = 0.

� For � bu2
bf2
> 1 and � b1

bf2
> q(1� p); WV = b1 + q(1� p)bf2 > 0.

� For p
1�p �

1
1�p

�
� b1
bf2

�
< � bu2

bf2
< 1 and � bu2

bf2
< 1�p

(1�q)p �
1

(1�q)p

�
� b1
bf2

�
;

WV = b1 + (1� q)pbu2 + (1� p)b
f
2 > 0.

� For � bu2
bf2
< p

1�p �
1
1�p

�
� b1
bf2

�
; WV = �qpbu2 > 0.

Thus, the WV is increasing in the probability of receiving new informa-
tion (exogenously) and in the level of the net bene�ts in the favorable state;
it is decreasing both in the level of the net bene�ts in the current period
(considered in absolute value, given that they are negative by assumption)
and in the level of the net bene�ts in the unfavorable state (taken in absolute
value and given that they are negative by assumption). For what concerns
the a priori probability of the state su (unfavorable state) before this state
is revealed, the WV is decreasing in p in �unfavorable" regions (i.e. regions
where jb1j and/or jbu2 j are very high and/or b

f
2 is very low) and increasing in

p in �favorable" regions (de�ned in the opposite way). Brie�y,

WV = WV ( p
+;�
; q
+
; jb1j

�
; jbu2 j

�
; bf2
+

)

If following the literature on quasi-option values we would calculate the
WV as the di¤erence between the optimal expected value in case of certain
exogenous information and the optimal expected value in the no information
case, i.e.

WVjq=1 = EVexojq=1
� � EVno� � 0
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we would �nd an upper bound for the WV we have calculated above, i.e.
WVjq=1 � WV , since WV is increasing in q:
Our conclusions on the properties of the WV are more general and �ro-

bust�than those of the standard literature on quasi-option values: we �nd
that in absence of endogenous information, even though exogenous informa-
tion does not arrive with certainty (but with a given probability q 2 (0; 1)),
the WV is always non-negative, thus forcing the DM towards a higher level of
preservation of the environmental area during the �rst and the second period
of choice.

In fact, looking at the results shown in Figure B:1 and D, it is not
di¢ cult to notice that in all regions of the quadrant I of the Cartesian plane
it is always

(c1
�)exo � (c1

�)no (a)

(c2
�)exo � (c2

�)no (b)

Result (a) is obvious.
Result (b) can be proved by applying this reasoning: because of irre-

versibility, (c2�)exo � (c1�)exo; (c2�)no � (c1�)no, but since (c1�)exo � (c1�)no in
Step (c) the DM has a larger choice set from which choosing (c2�)exo; since
the choice (c2�)no is possible also in case of exogenous information (because
it is surely (c1�)exo � (c1�)no), being objective function the same under each
information structure, (c2�)exo cannot be lower than (c2�)no.

4.3 Properties of the Testing Value

According to the de�nition we have introduced in Section 1.2, we de�ne the
Testing value as

TV = EV � � EV �exo
Hence,

EV � � EV �no = WV + TV
We could calculate the TV not (only) as an additional value of endoge-

nous to exogenous information (as we did above), rather as a value emerging
in the particular information context in which only endogenous information
is available, i.e.

TV 0 = EV �endo � EVno
In case the utility function would be linear (and in our case it is), one

could easily verify that TV = TV 0.
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By applying the latter method, one could get an environmental value
(linked to endogenous information) closer to theQOV", as de�ned by Freeman
(1984) and Fisher and Hanemann (1987), i.e. the di¤erence between the
expected bene�ts in case of certain endogenous information and the expected
bene�ts in the no information case:

TV 0j�=1 = EV
�
endoj�=1 � EVno

The TV 0j�=1 represents a base of comparison between our results and those
coming from the standard literature, that we have exhibited in Section 1.2.
Nonetheless, assuming again that theDM�s utility function is linear, through
the TV 0j�=1 we could easily derive the upper bound for the TV , i.e. TV

0
j�=1 �

TV 0 = TV , since the TV is increasing in �:

Now, let�s turn to the �rst de�nition of TV , the one we have introduced
ex novo in this thesis chapter. Since EV � and EVexo� vary according to
the values of b1; bu2 and b

f
2 , we have to calculate the di¤erence between the

two optimal expected values in the di¤erent regions of the Cartesian plane�
� b1
bf2
;� bu2

bf2

�
under the �both exogenous and endogenous� information sce-

nario and under the �only exogenous" information scenario, respectively.
We calculate the TV for di¤erent values of � and q , for two reasons:
- to show that our results hold independently from the values one can

assign to � and q; 25

- to analyze the behavior of the TV as a function of � and q.

Let us �rst compare Figure A:3 to Figure B:1 and calculate the TV (b1; bu2 ; b
f
2)

in case p = 1
2
; q = 1

3
and � = 1

3
.

For � bu2
bf2
> 1 and � b1

bf2
> 1

3
; TV = 0.

For � bu2
bf2
> 1 and 1

6
< � b1

bf2
< 1

3
; TV = 3

2

(b1+ 1
3
bf2)

2

bf2
> 0.

For � bu2
bf2
> 1 and 0 < � b1

bf2
< 1

6
; TV = 3

2
(b1)

2

bf2
> 0.

For � bu2
bf2
< 1 and � bu2

bf2
> 3� 6

�
� b1
bf2

�
; TV = 0.

For � bu2
bf2
< 1;� bu2

bf2
< 3� 6

�
� b1
bf2

�
and � bu2

bf2
> 3

2
� 3

�
� b1
bf2

�
;

TV = �3(b1+ 1
2
bf2+

1
6
bu2)

2

2bu2
> 0.

For � bu2
bf2
< 1;� bu2

bf2
< 3

2
� 3

�
� b1
bf2

�
and � bu2

bf2
> 1� 2

�
� b1
bf2

�
;

25We will show also that our results hold for every p 2 [0; 1]; but, since this is immediate
(just look at the formulas we write down), we don�t need to do any comparative statics
analysis based on p.
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TV = �3
2

(b1+ 1
2
bf2�

1
2
bu2)

2

bu2
> 0.

For � bu2
bf2
< 1� 2

�
� b1
bf2

�
; TV = 0.

Let us now compare Figure A:4 to Figure B:1 and calculate the TV (b1; bu2 ; b
f
2)

in case p = 1
2
and � = 1

4
< q = 1

3
.

The only �relevant� di¤erence with the case in which � � q is in the
north-west of quadrant I of the Cartesian plane, where we can �nd a region
s.t. even with endogenous information (additional to the exogenous one)
the DM preserves everything in the �rst period ((c�1)compl = 1) and nothing
in the second ((c�2)compl = 0). This region comes out only when � < q; in
other words, when it is more likely that new information at Step (c) arrives
exogenously than endogenously, . This happens only for jb1j very low and
jbu2 j much higher than b

f
2 :

For the values of the net bene�ts (b1; bu2 ; b
f
2) belonging to this region,

de�ned by the inequalities (
� bu2
bf2
> 1

� b1
bf2
< 1
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the Testing Value is again positive,

TV = (1� p)�bf2 =
1

8
bf2 > 0:

From the discussion above and from a careful analysis of Figures A:1 - D,
the main features of the Testing value turn out to be:

(1) TV � 0
(2) TV = TV ( p

+;�
; q
�
; �
+
; jb1j
+;�

; jbu2 j
+;�

; bf2
+

)

(3.a). Given bf2 and jbu2 j, for high values of jb1j (but not so high), it
happens that (c�1)compl > (c

�
1)exo.

(3.b) Given bf2 , for high values of jb1j (but not so high) and low values of
jbu2 j (but not so low), it happens that (c�1)compl > (c�1)exo and c�2 = (ĉ2)exo.
(4) The higher (lower) the value of � (q), the larger the region in which

(c�1)compl > (c
�
1)exo and the region in which (c

�
t )compl > (ĉt)exo 8t = 1; 2. 26

26As a �nal remark, we want to underline that we have veri�ed that all the results
about the optimal preservation levels, the WV and the TV we have presented in this
paper hold also in case the DM is risk-adverse, i.e. if his utility function is concave;
they hold independently from its concavity, i.e. independently from the DM�s degree of
risk aversion. Nonetheless, the results on the TV hold all the more so when the DM is
risk-averse. Details on calculations are available upon request.
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5 Conclusions

Our theoretical work presented in this �rst chapter of this thesis goes several
steps beyond the existing literature on environmental option values.

First of all, we generalize the features and extend the application of the
existing environmental choice framework.

More speci�cally, starting with the traditional two-period model of choice
(develop or preserve), we allow for a continuous choice set and analyze the
information side in the most complete possible way; in our model, we are
able to identify:

- if information comes out with certainty, with a certain probability or if
it does not;

- if information is (only) exogenous, (only) endogenous, or both.

In this more general framework, moving from the analysis of the meaning
of the QOV , we have de�ned a more general Waiting V alue (WV ) as the
value attached to the increase in expected utility (of preservation and de-
velopment net bene�ts) due to the possibility of acquiring new information
exogenously. We have shown the WV (as the QOV ) is always positive, thus
forcing the DM towards a higher level of preservation of the environmental
area during the �rst and the second period of choice.

In the environmental option values literature little attention has been
devoted to the �endogenous information� (dependent learning) case. Our
�general�framework allows for it.
There are several environmental choice problems needing to be modelled

by accounting for the fact that by developing (destroying) even a little portion
of an environmental resource, you are able to obtain (more) information on
future net bene�ts of preservation; nonetheless, the level and the quantity of
information coming out endogenously depends on the amount of the resource
developed (destroyed).
Miller and Lad (1984), Freeman (1984), Hanemann and Fisher (1987) and

again Fisher (2000) have shown that if information about the consequences of
an irreversible development action can be obtained only by undertaking de-
velopment, this strengthens the case for some development. In other words,
allowing for the possibility of new information acquired by developing (de-
stroying) at least a portion of the environmental resource would surely lead
to a lower amount of preservation in both periods with respect to the case
in which information comes out only exogenously. Their conclusion is re-
ally intuitive: the fact that �the more you destroy, the higher the possibility
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of obtaining new information� would increase dramatically the amount of
resource developed in the �rst period.

In the second part of this chapter, we prove the counterintuitive result
that (for a large set of values of net bene�ts of preservation) the possibility
of endogenous information pushes the DM towards a higher level of preser-
vation with respect to the case where information arrives only exogenously.
By generalizing Hanemann and Fisher�s (1987) analyses, throughout this

chapter of our thesis we have introduced a Testing V alue (TV ), de�ned
as the additional value attached to endogenous information (additional with
respect to information exogenously arriving); in other words, it is the gain
the DM obtains when he can receive information regarding future bene�ts,
by developing in the current period (with respect to the case in which he
ignores the possibility of receiving information in this manner). The need
for a TV arises in all those situations in which development of an environ-
mental area itself generates information about the future economic bene�ts
of development (and its future environmental costs).

We have shown the TV too is always positive and that it always pushes
the DM in the same direction of the WV (i.e. towards a higher level of
preservation of environmental resources).
Moreover, in many cases the TV pushes the DM towards preservation of

environmental resources more than waiting value (alone) does.
With regard to the level of preservation in the �exogenous and endoge-

nous�information scenario, we �nd that, with respect to the case in which
only exogenous information is available, in many cases (depending on the
values of b1; bu2 and b

f
2), c

�
1 and c

�
2 are higher (see Figure B:3 and B:4 as

compared to Figure C:1). This means that in all these cases, accounting
for the TV pushes the DM towards a higher level of preservation of the
environmental resource.
The reason is that the TV can lead the DM to develop only a certain

amount of the environmental asset (internal solutions); on the contrary, the
WV leads more frequently to corner solutions:

Some crucial Environmental Policy Issues can be deeply investigated
through our �more general�framework. According to the results presented in
this chapter, when both exogenous and endogenous information are available,

- it is not obvious that preserving the whole amount of an environmental
resource is the optimal choice;

- it is not obvious that the possibility of acquiring new information en-
dogenously leads to develop (destroy) a larger amount of the environmental
resource;
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- for a large set of values of the bene�ts of development/preservation,
the possibility of endogenous information being acquired and the consequent
emergence of the TV leads the DM to destroy less of an environmental re-
source, with respect to the case in which he takes into account only the WV
(allowing only for the possibility of acquiring new information exogenously);
hence, for this set of values, �testing�the environmental resource (by destroy-
ing a small part of it in t = 1) is not only the choice maximizing the DM�s
intertemporal expected utility, but also the one minimizing the amount of
environmental resource destroyed in the current and in the future periods.

28



Appendix

Case A: Complete (i.e. Endogenous and Exogenous) Information

Let us solve separately the maximization problem in the two sub-cases:

(i) pbu2 + (1� p)b
f
2 < 0 =) c2

� = 0

The compound lottery in Figure 2 can be reduced into the one-stage lottery
in Figure 3 below.

 1
c1

11
cb

1211 cbcb f+

11
cb

[ ]pcq )1( 1−+ λ

[ ] )1()1( 1 pcq −−+ λ

)1(1 1cq −−− λ

Figure 3

The expected value of the lottery (given that at Step (c) the DM follows an
optimal choice strategy independently from information he has received at
Step (b)) is

EV
�
c1; (c

u
2)
�; (cf2)

�; c2
� = 0

�
= f1� (1� p) [q + �(1� c1)]g b1c1 +

+(1� p) [q + �(1� c1)] (b1 + bf2)c1
= b1c1 + (1� p) [q + �(1� c1)] bf2c1

By the First Order Condition, we obtain

dEV (c1)

dc1

����
c2�=0

= b1 + (1� p)(q + �)bf2 � 2(1� p)�b
f
2c1 = 0

=) c1
� =

b1 + (1� p)(q + �)bf2
2(1� p)�bf2
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Considering that the quantity b1+(1�p)(q+�)bf2
2(1�p)�bf2

could be lower than 0 or greater

than 1, the optimal level of preservation in t = 1 is

c1
� =

8>>><>>>:
0 if b1 2

h
�1;�(1� p)(�+ q)bf2

i
(i)0

b1+(1�p)(q+�)bf2
2(1�p)�bf2

if b1 2
h
�(1� p)(�+ q)bf2 ; (1� p)(�� q)b

f
2

i
(i)00

1 if b1 2
h
(1� p)(�� q)bf2 ; 0

i
(i)000

By sustituting the bene�ts-dependent optimal levels of c1 and c2� = 0 in
the objective function, we �nd that the optimal expected value function
EV �(b1; b

u
2 ; b

f
2) is

EV � =

8>>><>>>:
0 if b1 2

h
�1;�(1� p)(�+ q)bf2

i
(i)0

[b1+(1�p)(q+�)bf2 ]
2

4(1�p)�bf2
if b1 2

h
�(1� p)(�+ q)bf2 ; (1� p)(�� q)b

f
2

i
(i)00

b1+(1� p)(q + �)bf2 if b1 2
h
(1� p)(�� q)bf2 ; 0

i
(i)000

(ii) pbu2 + (1� p)b
f
2 > 0 =) c2

� = c1

The compound lottery in Figure 2 can be reduced to the one-stage lottery
in Figure 4 below.

 1
c1

11
cb

1211 cbcb f+

1211 cbcb u+

1211 cbcb f+

[ ]pcq )1( 1−+ λ

[ ] )1()1( 1 pcq −−+ λ

[ ]pcq )1(1 1−−− λ

[ ]( )pcq −−−− 1)1(1 1λ

Figure 4
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that can be still reduced to the lottery

1­p

 1
c1

11
cb

1211 cbcb f+

1211 cbcb u+

[ ]pcq )1( 1−+ λ

[ ]pcq )1(1 1−−− λ

Figure 5

The expected value of the lottery (given that in Step (c) the DM follows an
optimal choice strategy independently from information he has received in
Step (b)) is

EV
�
c1; (c

u
2)
�; (cf2)

�; c2
� = c1

�
= b1c1 + (1� p)bf2c1 + f1� [q + �(1� c1)]g pbu2c1

= b1c1 + (1� p)bf2c1 + p(1� q � �+ �c1)bu2c1

By the First Order Condition, we obtain

dEV (c1)

dc1

����
c2�=c1

= b1 + (1� p)bf2 + p(1� q � �)bu2 + 2�pbu2c1 = 0

=) c2
� = �b1 + (1� p)b

f
2 + p(1� q � �)bu2
2p�bu2

Considering that the quantity � b1+(1�p)bf2+p(1�q��)bu2
2p�bu2

could be lower than 0 or
greater than 1, the optimal level of preservation in t = 1 is

c1
� =

8><>:
0 if b1 + (1� p)bf2 + (1� q)bu2 2 [�1; �bu2 ] (ii)0

� b1+(1�p)bf2+p(1�q��)bu2
2p�bu2

if b1 + (1� p)bf2 + (1� q)bu2 2 [�bu2 ;��bu2 ] (ii)00

1 if b1 + (1� p)bf2 + (1� q)bu2 2 [��bu2 ;+1] (ii)000

By sustituting the bene�ts-dependent optimal levels of c1 and c2� = c1
�

in the objective function, we �nd that the optimal expected value function
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EV �(b1; b
u
2 ; b

f
2) is

EV � =

8><>:
0 if b1 + (1� p)bf2 + (1� q)bu2 2 [�1; �bu2 ] (ii)0

� [b1+(1�p)b
f
2+p(1�q��)bu2 ]

2

4p�bu2
if b1 + (1� p)bf2 + (1� q)bu2 2 [�bu2 ;��bu2 ] (ii)00

b1+(1� p)bf2+p(1� q)b
u
2 if b1 + (1� p)bf2 + (1� q)bu2 2 [��bu2 ;+1] (ii)000

:
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